Multi-Laboratory Validation of SW-846 Method 8327 Per- and Polyfluoroalkyl Substances (PFAS) Using External Standard Calibration and Multiple Reaction Monitoring (MRM) Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)

Authors: Troy Strock¹, Kim Kirkland¹, Christie Langlois-Miller¹, Schatzi Fitz-James², Linda Gaines², Diane Reese³, Steve Reimer⁴

¹ EPA OLEM ORCR
² EPA OLEM OSRTI
³ EPA Region 6
⁴ EPA Region 10

UNITED STATES

THIAL PROTECT

ENVIRO

Validation of SW-846 Methods 3512 and 8327 for PFAS in Non-Potable Waters by LC/MS/MS

Authors: Troy Strock¹, Kim Kirkland¹, Christie Langlois-Miller¹, Schatzi Fitz-James², Linda Gaines², Diane Reese³, Steve Reimer⁴

¹ EPA OLEM ORCR
² EPA OLEM OSRTI
³ EPA Region 6
⁴ EPA Region 10

NEMC 2020 - August 3 - 21, 202 vironment in 2020: Past. Present. an

Disclaimer

The information in this presentation has not been subjected to formal review by the U.S. Environmental Protection Agency (EPA). The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the Agency. Mention of trade names or commercial products is only intended to indicate materials that were used during development or validation, and no endorsement by the United States government or recommendation for use.

Outline

- Overview of test methods
- Summary of interlaboratory validation study:
 - Objectives
 - Experimental design
 - Data for blind samples and quality controls
 - Likely causes of non-conforming data
- Themes in public comments
- Anticipated timeline for completion

UNITED STATES

GENC

5

The SW-846 Methods Compendium

- >200 test methods
- Published by EPA's Office of Resource Conservation and Recovery
- Method Defined Parameters (MDPs) in 40 CFR Part 260.11: <u>Required</u>
- SW-846 methods for non-MDPs are guidance and can be modified, or other reliable analytical methods may be used, as long as:
 - Modifications are acceptable to the end data user
 - Generated data are of sufficient quality for the intended application

https://www.epa.gov/hw-sw846/sw-846-compendium https://www.epa.gov/sites/production/files/2015-10/documents/abstract.pdf https://www.epa.gov/sites/production/files/2015-10/documents/policy-statement-federal-register.pdf

Overview of Validated Methods

Method 3512 (Sample Preparation for non-potable waters):

- Add standards (mass-labeled surrogates and any target analytes)
- Dilute sample 1:1 with methanol
- Vortex for 2 min
- Filter through 0.2 μm filter
- Add 0.1% acetic acid by volume

Method 8327 (Determinative):

- External standard calibration
- Calibration standards in 1:1 Methanol-water+0.1% acetic acid
- Spiking solutions in 95:5 ACN-water
- LC Conditions: Acetonitrile-water gradient with ammonium acetate modifier
- ESI negative ionization mode
- Only one monitored product ion for PFBA, PFPeA, PFOSA

Overview of Validated Methods

Advantages	Disadvantages
Small sample size (5 mL)	Introduces a small dilution factor (2x)
Rapid sample preparation	Need modern LC/MS instrument to achieve low ng/L sensitivity
Few process steps	Not consistent with current practice in many
	testing laboratories

Validation study design

Data Quality Objectives:

Bias/Recovery: 70-130% Recovery (median) Precision: ≤50% RSD Sensitivity: 10 ng/L Lower Limits of Quantitation (LLOQs)

24 target analytes:

C4-C14 Perfluorinated carboxylic acids C4-C10 Perfluorinated sulfonic acids 4:2, 6:2, 8:2 Fluorotelomer sulfonates Perfluorooctane sulfonamide N-Methyl and N-ethyl perfluorooctane sulfonamidoacetic acids

19 isotopically labeled surrogates:

Analogs of all targets except PFTriDA, PFPeS, PFHpS, PFNS, PFDS

Validation study design

Prepared Concentrations (nominal):• Background (unspiked) • 60 ng/L • 200 ng/L	
Replicates:• 5 of each matrix at each prepared con- • Total of 60 blind samples for each lab	centratior
Preparation and analysis:• Prepared in 3 batches of 20 samples ea • Randomly assigned analysis sequence of	

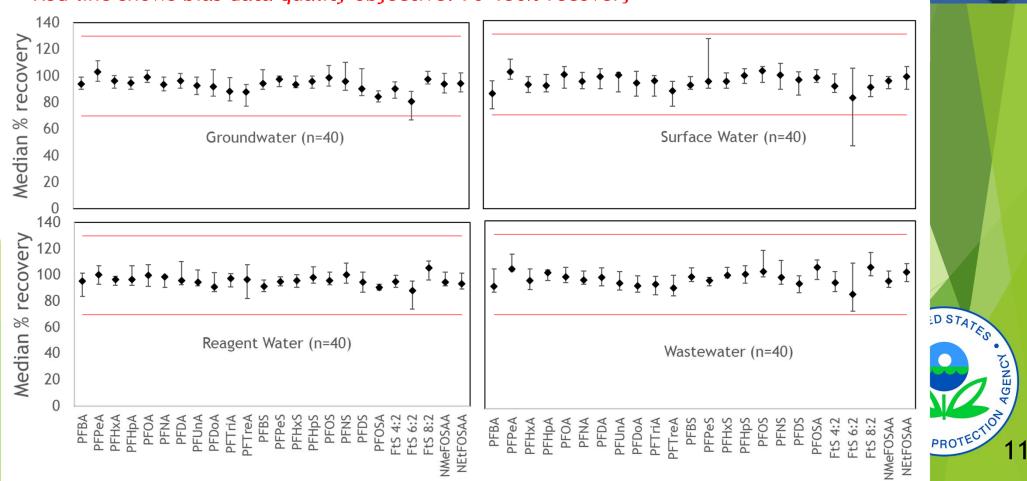
Validation study design

Phase 1 - 2017, 6 USEPA Program, Regional, ORD Labs Phase 2 - 2018, 7 State and commercial labs, instrument vendors

12 labs submitted data - 6 from each phase

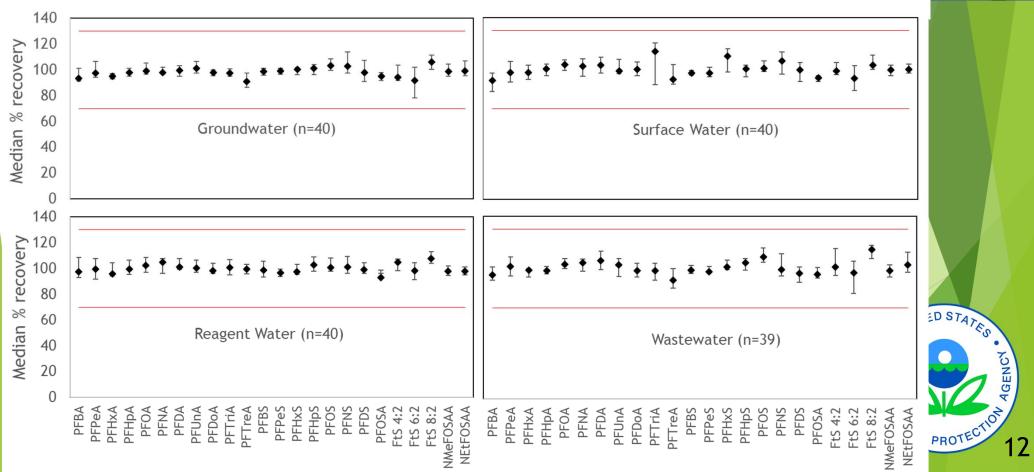
8 labs' data used for statistical analysis - 4 from each phase

4 Excluded labs:

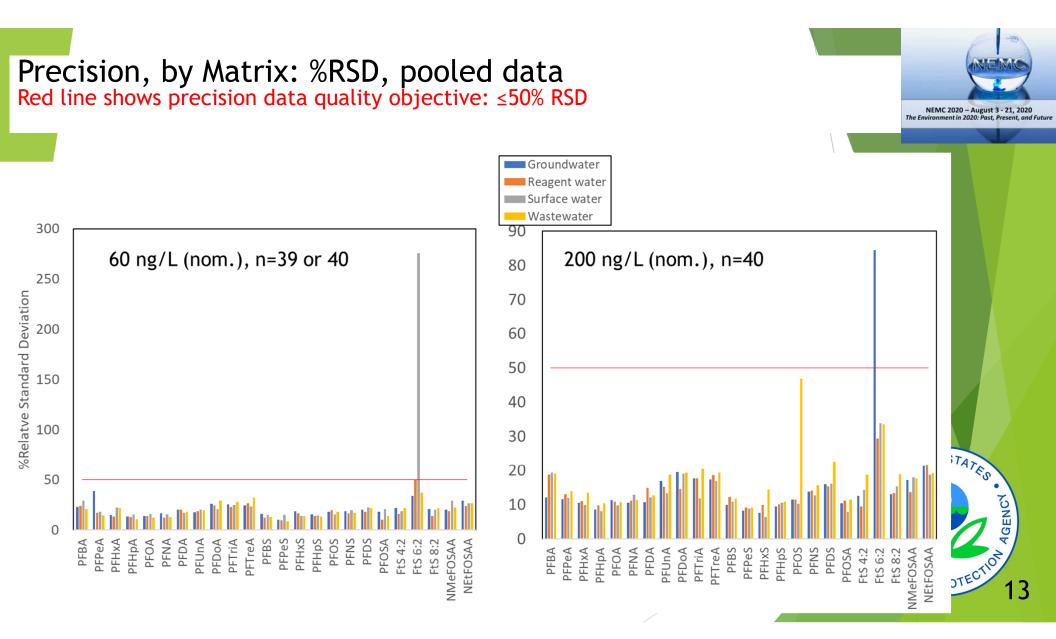

-Subsampled prior to adding solvent, resulting in low recovery of longer-chain target analytes in study samples

-Prepared spiking solutions in 1:1 MeOH-water+0.1% acetic acid and stored in glass resulting in high recovery of longer-chain target analytes in study samples

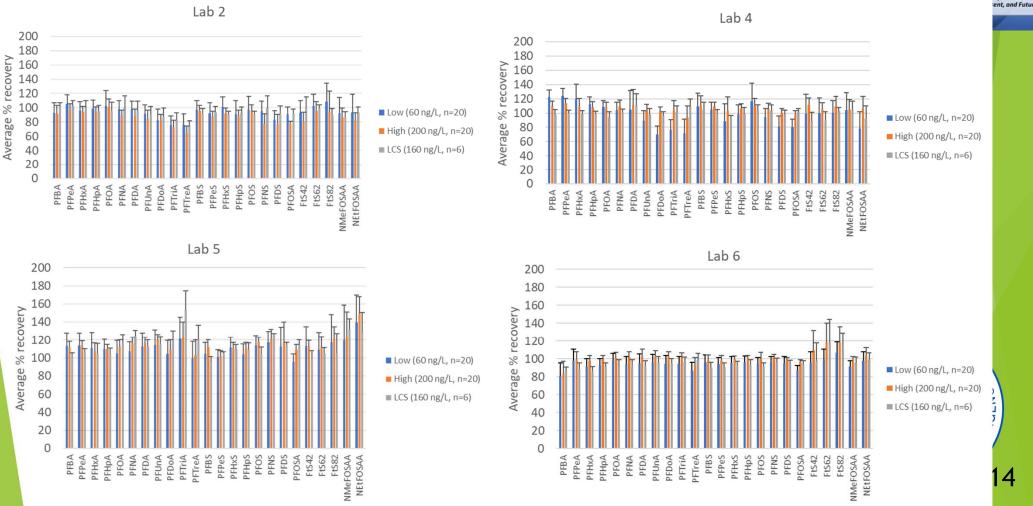
-One lab identified having instrument stability problems



Recovery, by Matrix: Median recovery of 60 ng/L addition (pooled data; error bars show 95% CI) Red line shows bias data quality objective: 70-130% recovery

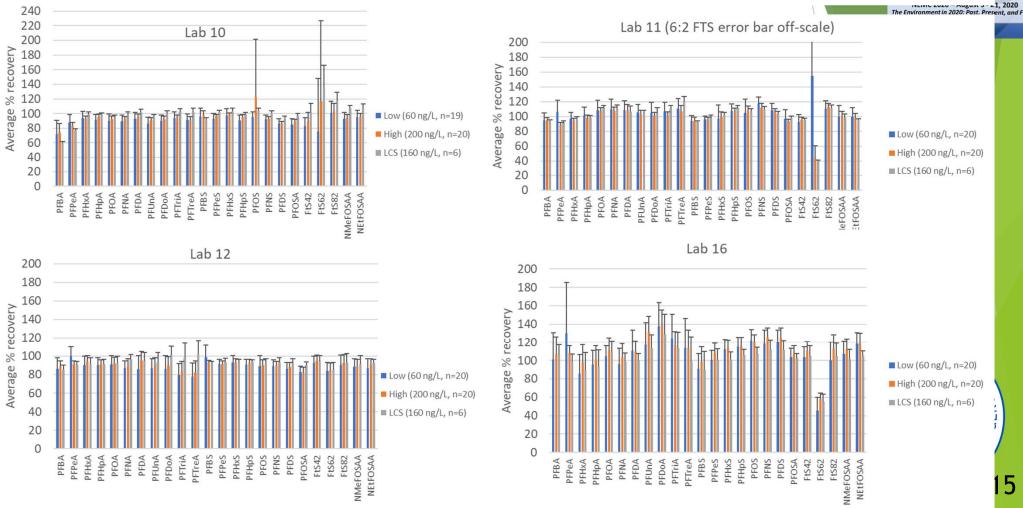

EMC 2020 - August 3 - 21, 2020 onment in 2020: Past, Present, and

Recovery, by Matrix: Median recovery of 200 ng/L addition (pooled data; error bars show 95% CI) Red line shows bias data quality objective: 70-130%

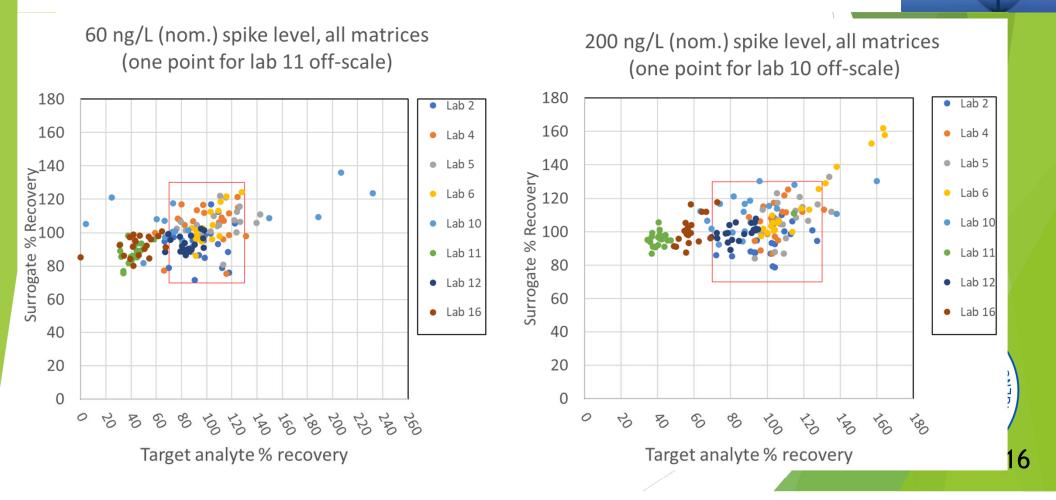


EMC 2020 - August 3 - 21, 2020

nt in 2020: Past, Present, and



Phase 1 Recovery by Lab and Spike Level Across Matrices and in LCS Error bars are 1 standard deviation

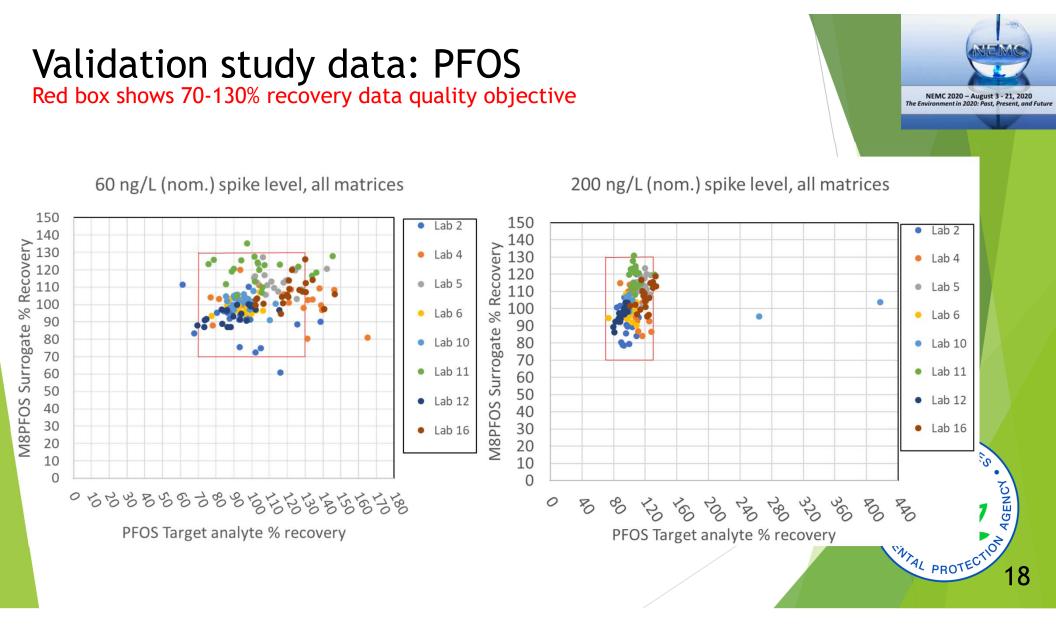

2020

Phase 2 Recovery by Lab and Spike Level Across Matrices and in LCS Error bars are 1 standard deviation

5

Blind Study Samples: 6:2 Fluorotelomer Sulfonate (6:2 FTS) Red box shows 70-130% recovery data quality objective

NEMC 2020 - August 3 - 21, 2020 vironment in 2020: Past, Present, and

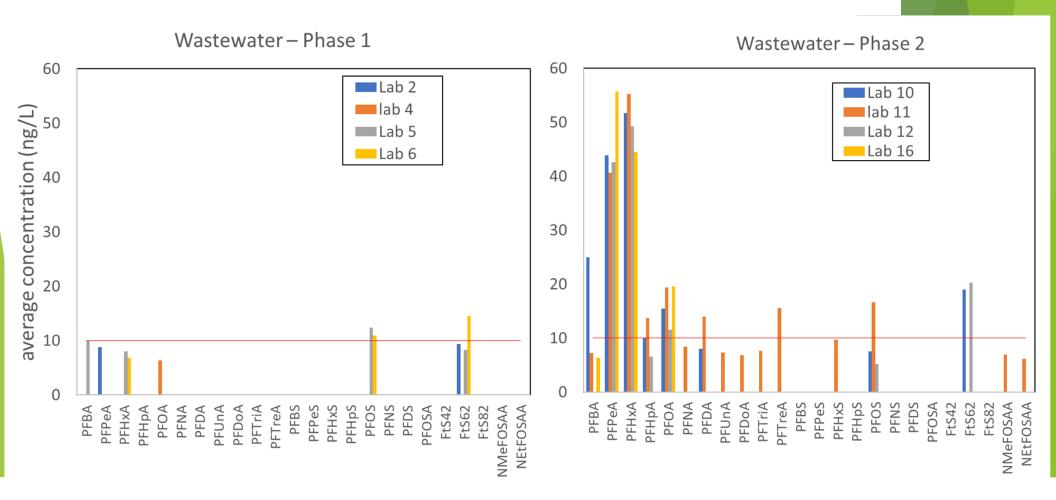


Quality Controls and study data for 6:2 FTS

		Lab 2	Lab 4	Lab 5	Lab 6	Lab 10	Lab 11	Lab 12	Lab 16
Reagent blank	Max conc (ng/L)	< 5	< 5	14.3	< 5	< 5	< 5	< 5	29.6
Method blank	max conc (ng/L)	< 5	< 5	< 5	115	116	< 5	5.5	< 5
CCV % drift (n=3 for labs 2-6; n=6 for									
labs 10-12; n=10 for lab 16)	# outside ±30% drift	0	0	0	0	0	4	0	2
LLOQ Verification	Prepared conc that met 50-150% REC	10-20 ng/L	40-80 ng/L	10-20 ng/L	10 ng/L	160 ng/L or none	none	20 ng/L	160 ng/L
LCS % Recovery (n=6)	mean	99.9	90.2	105	118	135	40.0	85.0	55.1
	stdev	3.8	11.8	6.0	26.1	31.1	1.5	8.1	8.2
M2-6:2 FTS surrogate % recovery	mean	93.2	107	105	110	107	93.1	99.8	101
in samples (n=59 or 60)	stdev	11.3	17.8	11.7	24.9	13.4	25.1	4.67	8.35
% Recovery in 60 ng/L (nom.)	mean	95.7	100	109	99.3	75.3	155	84.2	45.4
study samples (n=19 or 20)	stdev	16.7	20.9	19.0	11.6	72.8	512	8.9	14.4
% Recovery in 200 ng/L (nom.)	mean	102	109	112	118	117	43.9	84.4	58.2
study samples (n=20)	stdev	13.0	14.4	11.6	22.1	110	17.0	8.3	6.1

THE PROTECTION

17


19

Quality controls and study data for PFOS

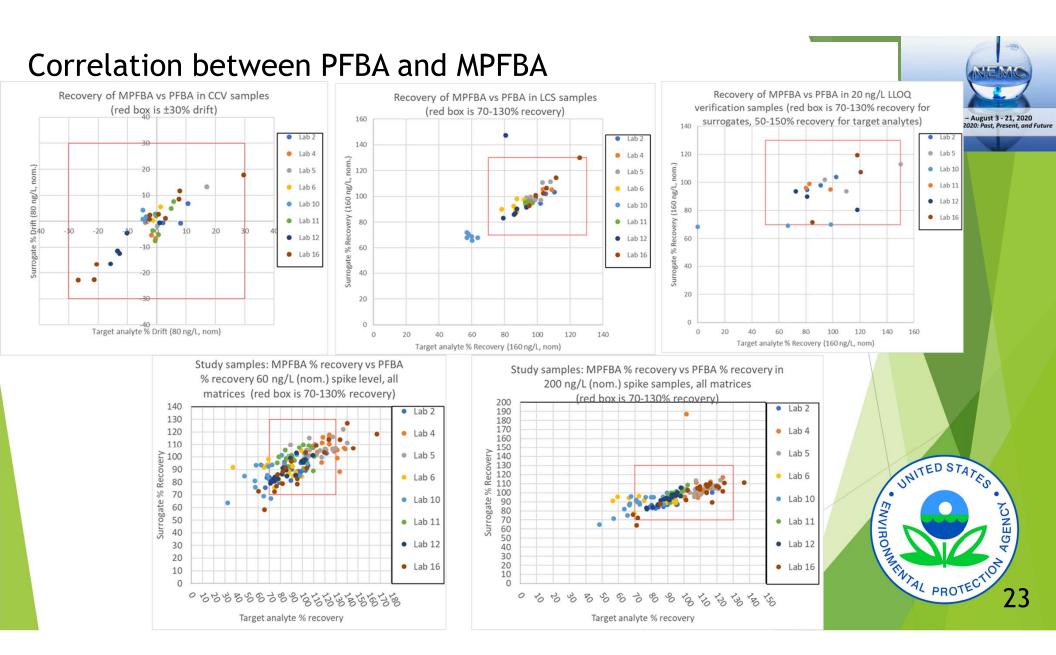
		Lab 2	Lab 4	Lab 5	Lab 6	Lab 10	Lab 11	Lab 12	Lab 16	
Reagent blank	Max concentration	<5 ng/L	<5 ng/L	<5 ng/L	<5 ng/L	<5 ng/L	<5 ng/L	<5 ng/L	<5 ng/L	
Method blank	Max concentration	<5 ng/L	<5 ng/L	<5 ng/L	<5 ng/L	<5 ng/L	9.9 ng/L	<5 ng/L	<5 ng/L	
LLOQ Verification	Prepared conc that met 50-150% REC	10-20 ng/L	40-80 ng/L	10-20 ng/L	10 ng/L	10 ng/L	20 ng/L	10 ng/L	10 ng/L	
LCS % REC (n=6)	mean	89.9	103	104	91.8	104	107	91.3	108	
	stdev	5.1	8.7	7.7	3.4	2.6	3.9	5.7	6.8	
% REC of M8PFOS surrogate in samples (n=59 or 60)	mean	92.3	104	113	101	102	119	95.3	108	
	stdev	11.5	17.5	7.0	15.0	6.6	6.9	4.6	8.0	
% REC in 60 ng/L blind samples (n=19 or 20)	mean	96.2	117	114	94.5	95.0	105	89.3	122	
	stdev	18.3	25.2	11.0	6.8	7.5	18.9	11.4	12.2	TATE
% REC in 200 ng/L blind samples (n=20)	mean	97.3	110	118	99.8	123	108	90.2	120	<u> </u>
	stdev	7.5	10.5	5.1	7.2	78.7*	6.7	5.5	8.4	
	gh spike wastewaters in), respectively; without							ed above	BOUNKENTAL PRO	TATES SUPERIOR

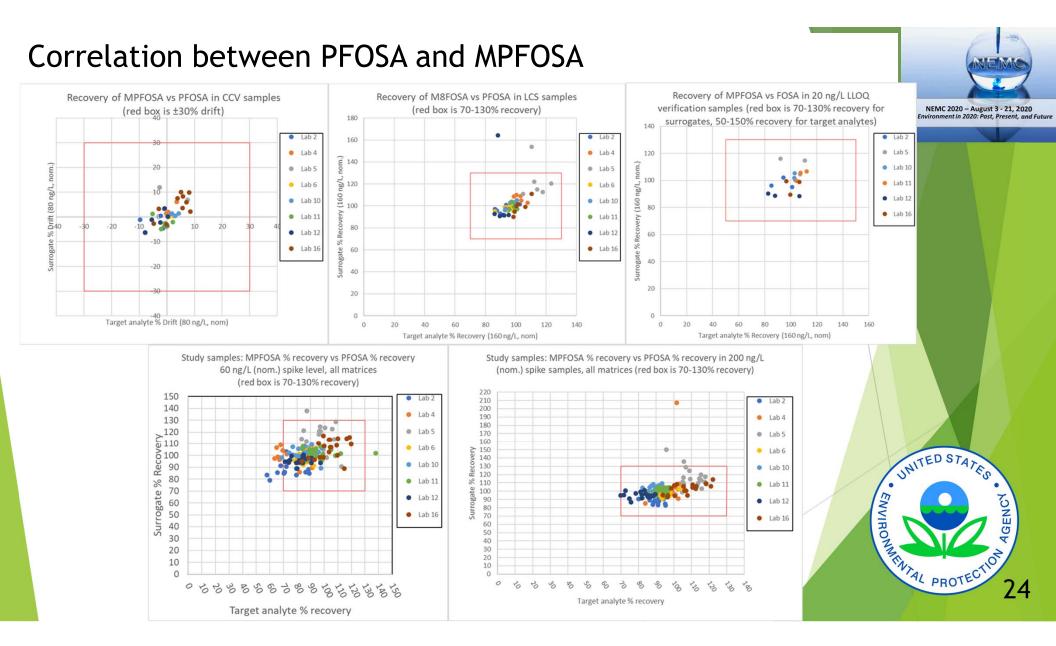
Wastewater samples- Background Concentrations

Red line is 10 ng/L, lowest LLOQ evaluated for study

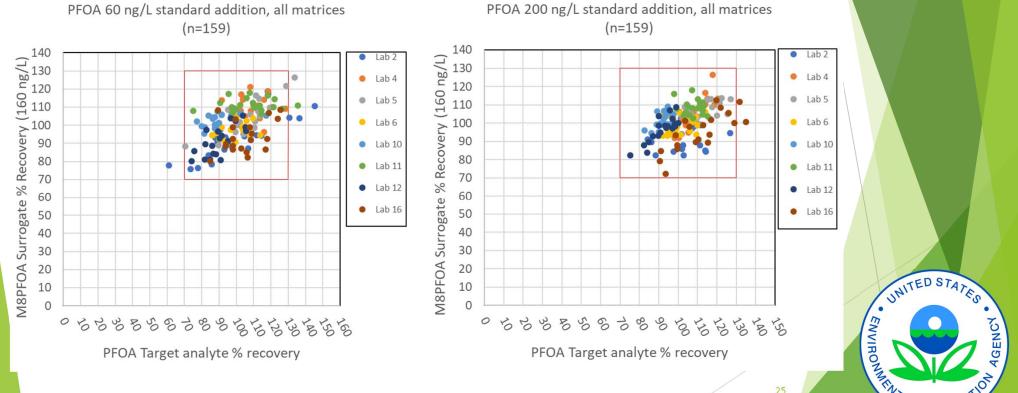
NEMC 2020 - August 3 - 21, 2020 vironment in 2020: Past, Present, and Futur

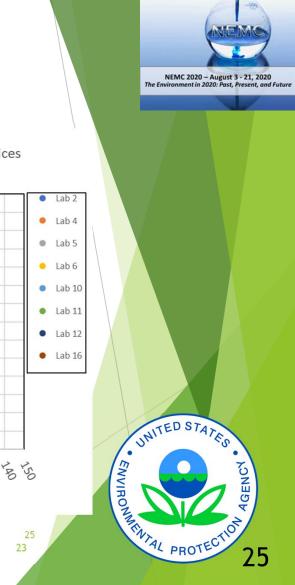
Sample Preparation Quality Controls: Surrogates Study acceptance limits: 70-130% recovery


Surrogate Perform	ance across a	ll labor	atories					
	% recovery, all matrices (n=477)							
	mean	stdev	# outside	% outside 70- 130%				
Surrogate	mean	sluev	70-130%					
MPFBA	95.6	10.9	11	2.3				
M5PFPeA	98.7	7.5	0	0.0				
M5PFHxA	97.4	11.8	10	2.1				
M4PFHpA	98.9	10.9	8	1.7				
M8PFOA	100.9	9.5	1	0.2				
M9PFNA	102.2	11.6	4	0.8				
M6PFDA	104.5	12.1	8	1.7				
M7PFUnDA	103.3	11.6	6	1.3				
MPFDoDA	100.8	14.7	21	4.4				
M2PFTeDA	96.8	18.8	49	10.3				
M3PFBS	96.9	12.0	8	1.7				
M3PFHxS	101.5	8.0	0	0.0				
M8PFOS	104.0	11.2	5	1.0				
M8FOSA	100.6	8.9	5	1.0				
M2-8:2FTS	106.0	13.9	21	4.4				
M2-6:2FTS	100.4	15.4	11	2.3				
M2-4:2FTS	97.8	19.4	38	8.0				
d3NMeFOSAA	102.6	16.1	39	8.2				
d5NEtFOSAA	104.1	16.0	41	8.6				



Themes in public comments


- Use or at least include option for isotope dilution calibration
- Clarify qualitative ID and quantitation of linear and branched isomers
- Need for validated solids preparation method
- Holding time study
- Include additional target analytes (e.g., HFPO-DA, DONA)
- Use statistically derived or (different) fixed limits for standard additions
- CCV frequency and acceptance criteria
- Particle filtration vs centrifuging
- Container materials for samples, sample extracts and standards



Recovery by Analyte, All Matrices: Perfluorooctanoic acid (PFOA) Red box shows 70-130% recovery

Timeline

- Methods workgroup review completed
- Currently finalizing package for ORCR management review, including methods and responses to public comments
- Anticipated publication date: Fall 2020
- Plan to provide more detailed write-up of validation study post-publication

Validation Study Summary and Conclusions

- Data quality objectives for precision, bias and sensitivity were met for all target analytes except 6:2 FTS
 - Note: Labs that consistently met QC criteria for instrument and sample preparation quality controls produced 6:2 FTS data with acceptable precision and bias
- Deviations from critical steps in the study protocol will be identified as cautions in methods
 - Avoid subsampling prior to adding organic solvent
 - Avoid long-term storage of solutions in 1:1 MeOH-water+0.1% acetic acid in glass
- Modern LC/MS systems from multiple instrument vendors achieved LLOQs of 10-20 ng/L for most target analytes, including PFOS, PFOA
- Direct analysis with minimal preparation has a number of advantages, including reduced labor/cost and faster turnaround

Thank you for listening

Acknowledgements: EPA Study Team - OLEM, Regions, OW, ORD Participating Laboratories PFAS Methods Workgroup EPA Region 5 Laboratory - Method Developer Persons/organizations that provided public comments

Contact info: e-mail <u>strock.troy@epa.gov</u> desk phone: 703.308.8637

